Product Code Database
Example Keywords: android -games $49
barcode-scavenger
   » » Wiki: Image (mathematics)
Tag Wiki 'Image (mathematics)'.
Tag

In , for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y.

More generally, evaluating f at each element of a given subset A of its domain X produces a set, called the " image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the Y is the set of all elements of X that map to a member of B.

The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used.

Image and inverse image may also be defined for general binary relations, not just functions.


Definition
The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y.


Image of an element
If x is a member of X, then the image of x under f, denoted f(x), is the value of f when applied to x. f(x) is alternatively known as the output of f for argument x.

Given y, the function f is said to or if there exists some x in the function's domain such that f(x) = y. Similarly, given a set S, f is said to if there exists x in the function's domain such that f(x) \in S. However, and means that f(x) \in S for point x in the domain of f .


Image of a subset
Throughout, let f : X \to Y be a function. The under f of a subset A of X is the set of all f(a) for a\in A. It is denoted by fA, or by f(A) when there is no risk of confusion. Using set-builder notation, this definition can be written as Here: Sect.8 fA = \{f(a) : a \in A\}.

This induces a function f\,\cdot\, : \mathcal P(X) \to \mathcal P(Y), where \mathcal P(S) denotes the of a set S; that is the set of all of S. See below for more.


Image of a function
The image of a function is the image of its entire domain, also known as the range of the function. This last usage should be avoided because the word "range" is also commonly used to mean the of f.


Generalization to binary relations
If R is an arbitrary on X \times Y, then the set \{ y \in Y : x R y \text{ for some } x \in X \} is called the image, or the range, of R. Dually, the set \{ x \in X : x R y \text{ for some } y \in Y \} is called the domain of R.


Inverse image
Let f be a function from X to Y. The preimage or inverse image of a set B \subseteq Y under f, denoted by f^{-1}B, is the subset of X defined by f^{-1} = \{ x \in X \,:\, f(x) \in B \}.

Other notations include f^{-1}(B) and f^{-}(B). The inverse image of a singleton set, denoted by f^{-1}\{ or by f^{-1}(y), is also called the fiber or fiber over y or the of y. The set of all the fibers over the elements of Y is a family of sets indexed by Y.

For example, for the function f(x) = x^2, the inverse image of \{ 4 \} would be \{ -2, 2 \}. Again, if there is no risk of confusion, f^{-1}B can be denoted by f^{-1}(B), and f^{-1} can also be thought of as a function from the power set of Y to the power set of X. The notation f^{-1} should not be confused with that for , although it coincides with the usual one for bijections in that the inverse image of B under f is the image of B under f^{-1}.


Notation for image and inverse image
The traditional notations used in the previous section do not distinguish the original function f : X \to Y from the image-of-sets function f : \mathcal{P}(X) \to \mathcal{P}(Y); likewise they do not distinguish the inverse function (assuming one exists) from the inverse image function (which again relates the powersets). Given the right context, this keeps the notation light and usually does not cause confusion. But if needed, an alternative is to give explicit names for the image and preimage as functions between power sets:


Arrow notation
  • f^\rightarrow : \mathcal{P}(X) \to \mathcal{P}(Y) with f^\rightarrow(A) = \{ f(a)\;|\; a \in A\}
  • f^\leftarrow : \mathcal{P}(Y) \to \mathcal{P}(X) with f^\leftarrow(B) = \{ a \in X \;|\; f(a) \in B\}


Star notation
  • f_\star : \mathcal{P}(X) \to \mathcal{P}(Y) instead of f^\rightarrow
  • f^\star : \mathcal{P}(Y) \to \mathcal{P}(X) instead of f^\leftarrow


Other terminology
  • An alternative notation for fA used in mathematical logic and is f\,''A.M. Randall Holmes: Https://pdfs.semanticscholar.org/d8d8/5cdd3eb2fd9406d13b5c04d55708068031ef.pdf" target="_blank" rel="nofollow"> Inhomogeneity of the urelements in the usual models of NFU, December 29, 2005, on: Semantic Scholar, p. 2
  • Some texts refer to the image of f as the range of f, but this usage should be avoided because the word "range" is also commonly used to mean the of f.


Examples
  1. f : \{ 1, 2, 3 \} \to \{ a, b, c, d \} defined by
   \left\{\begin{matrix}
     1 \mapsto a, \\
     2 \mapsto a, \\
     3 \mapsto c.
   \end{matrix}\right.
  The ''image'' of the set \{ 2, 3 \} under f is f(\{ 2, 3 \}) = \{ a, c \}. The ''image'' of the function f is \{ a, c \}. The ''preimage'' of a is f^{-1}(\{ a \}) = \{ 1, 2 \}. The ''preimage'' of \{ a, b \} is also f^{-1}(\{ a, b \}) = \{ 1, 2 \}. The ''preimage'' of \{ b, d \} under f is the [[empty set]] \{ \ \} = \emptyset.
     
  1. f : \R \to \R defined by f(x) = x^2. The image of \{ -2, 3 \} under f is f(\{ -2, 3 \}) = \{ 4, 9 \}, and the image of f is \R^+ (the set of all positive real numbers and zero). The preimage of \{ 4, 9 \} under f is f^{-1}(\{ 4, 9 \}) = \{ -3, -2, 2, 3 \}. The preimage of set N = \{ n \in \R : n < 0 \} under f is the empty set, because the negative numbers do not have square roots in the set of reals.
  2. f : \R^2 \to \R defined by f(x, y) = x^2 + y^2. The fibers f^{-1}(\{ a \}) are concentric circles about the origin, the origin itself, and the (respectively), depending on whether a > 0, \ a = 0, \text{ or } \ a < 0 (respectively). (If a \ge 0, then the fiber f^{-1}(\{ a \}) is the set of all (x, y) \in \R^2 satisfying the equation x^2 + y^2 = a, that is, the origin-centered circle with radius \sqrt{a}.)
  3. If M is a and \pi : TM \to M is the canonical projection from the TM to M, then the fibers of \pi are the T_x(M) \text{ for } x \in M. This is also an example of a .
  4. A is a homomorphic image.


Properties
+ ! Counter-examples based on the \R,
f : \R \to \R defined by x \mapsto x^2,
showing that equality generally need
not hold for some laws:
[File:Image and B = -2, are shown in immediately below the x-axis while their intersection A_3 = -2, is shown in .]]


General
For every function f : X \to Y and all subsets A \subseteq X and B \subseteq Y, the following properties hold:

f(X) \subseteq Yf^{-1}(Y) = X
f\left(f^{-1}(Y)\right) = f(X)f^{-1}(f(X)) = X
f\left(f^{-1}(B)\right) \subseteq B
(equal if B \subseteq f(X); for instance, if f is surjective)See See
f^{-1}(f(A)) \supseteq A
(equal if f is injective)
f(f^{-1}(B)) = B \cap f(X)\left(f \vert_A\right)^{-1}(B) = A \cap f^{-1}(B)
f\left(f^{-1}(f(A))\right) = f(A)f^{-1}\left(f\left(f^{-1}(B)\right)\right) = f^{-1}(B)
f(A) = \varnothing \,\text{ if and only if }\, A = \varnothingf^{-1}(B) = \varnothing \,\text{ if and only if }\, B \subseteq Y \setminus f(X)
f(A) \supseteq B \,\text{ if and only if } \text{ there exists } C \subseteq A \text{ such that } f(C) = Bf^{-1}(B) \supseteq A \,\text{ if and only if }\, f(A) \subseteq B
f(A) \supseteq f(X \setminus A) \,\text{ if and only if }\, f(A) = f(X)f^{-1}(B) \supseteq f^{-1}(Y \setminus B) \,\text{ if and only if }\, f^{-1}(B) = X
f(X \setminus A) \supseteq f(X) \setminus f(A)f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)
f\left(A \cup f^{-1}(B)\right) \subseteq f(A) \cup BSee p.388 of Lee, John M. (2010). Introduction to Topological Manifolds, 2nd Ed.f^{-1}(f(A) \cup B) \supseteq A \cup f^{-1}(B)
f\left(A \cap f^{-1}(B)\right) = f(A) \cap Bf^{-1}(f(A) \cap B) \supseteq A \cap f^{-1}(B)

Also:

  • f(A) \cap B = \varnothing \,\text{ if and only if }\, A \cap f^{-1}(B) = \varnothing


Multiple functions
For functions f : X \to Y and g : Y \to Z with subsets A \subseteq X and C \subseteq Z, the following properties hold:

  • (g \circ f)(A) = g(f(A))
  • (g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))


Multiple subsets of domain or codomain
For function f : X \to Y and subsets A, B \subseteq X and S, T \subseteq Y, the following properties hold:

A \subseteq B \,\text{ implies }\, f(A) \subseteq f(B)S \subseteq T \,\text{ implies }\, f^{-1}(S) \subseteq f^{-1}(T)
f(A \cup B) = f(A) \cup f(B)f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)
f(A \cap B) \subseteq f(A) \cap f(B)
(equal if f is injectiveSee )
f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)
f(A \setminus B) \supseteq f(A) \setminus f(B)
(equal if f is injective)
f^{-1}(S \setminus T) = f^{-1}(S) \setminus f^{-1}(T)
f\left(A \triangle B\right) \supseteq f(A) \triangle f(B)
(equal if f is injective)
f^{-1}\left(S \triangle T\right) = f^{-1}(S) \triangle f^{-1}(T)

The results relating images and preimages to the (Boolean) algebra of intersection and union work for any collection of subsets, not just for pairs of subsets:

  • f\left(\bigcup_{s\in S}A_s\right) = \bigcup_{s\in S} f\left(A_s\right)
  • f\left(\bigcap_{s\in S}A_s\right) \subseteq \bigcap_{s\in S} f\left(A_s\right)
  • f^{-1}\left(\bigcup_{s\in S}B_s\right) = \bigcup_{s\in S} f^{-1}\left(B_s\right)
  • f^{-1}\left(\bigcap_{s\in S}B_s\right) = \bigcap_{s\in S} f^{-1}\left(B_s\right)
(Here, S can be infinite, even uncountably infinite.)

With respect to the algebra of subsets described above, the inverse image function is a lattice homomorphism, while the image function is only a homomorphism (that is, it does not always preserve intersections).


See also

Notes

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
2s Time